
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 9:
Inheritance and Interfaces

2Copyright 2006 by Pearson Education

Lecture outline
� the equals method

� polymorphism

� "inheritance mystery" problems

3Copyright 2006 by Pearson Education

Class Class ObjectObject andand

The The equalsequals methodmethod

reading: 8.6

4Copyright 2006 by Pearson Education

Class Object
� All types of objects have a superclass named Object.

� Every class implicitly extends Object .

� The Object class defines several methods:

� public String toString()
Used to print the object.

� public boolean equals(Object other)
Compare the object to any other for equality.

5Copyright 2006 by Pearson Education

Comparing objects
� The == operator does not work well with objects.

� == compares references to objects, not their state.

� Example:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

3y5x
p1

p2

...

3y5x

6Copyright 2006 by Pearson Education

The equals method
� The equals method compares the state of objects.

� equals should be used when comparing Strings, Points, ...

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

� If you write your own class, its equals method

will behave just like the == operator.

if (p1.equals(p2)) { // false

System.out.println("equal");

}

� This is the behavior we inherit from class Object.

7Copyright 2006 by Pearson Education

Initial flawed equals method
� We can change this behavior by writing an equals method.

� Ours will override the default behavior from class Object.

� The method should compare the state of the two objects and

return true for cases like the above.

� A flawed implementation of the equals method:

public boolean equals(Point other) {

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}

8Copyright 2006 by Pearson Education

Flaws in equals method
� The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

� It should be legal to compare a Point to any object
(not just other Point objects):

// this should be allowed
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...

� equals should always return false if a non-Point is passed.

9Copyright 2006 by Pearson Education

equals and the Object class
� equals method, general syntax:

public boolean equals(Object <name>) {

<statement(s) that return a boolean value> ;

}

� The parameter to equals must be of type Object.

� Object is a general type that can match any object.

� Having an Object parameter means any object can be passed.

10Copyright 2006 by Pearson Education

Another flawed version
� Another flawed equals implementation:

public boolean equals(Object o) {
return x == o.x && y == o.y;

}

� It does not compile:

Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
return x == o.x && y == o.y;

^

� The compiler is saying,

"o could be any object. Not every object has an x field."

11Copyright 2006 by Pearson Education

Type-casting objects
� Solution: Type-cast the object parameter to a Point.

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

� Casting objects is different than casting primitives.

� We're really casting an Object reference into a Point reference.

� We're promising the compiler that o refers to a Point object.

12Copyright 2006 by Pearson Education

Casting objects diagram
� Client code:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) {

System.out.println("equal");
}

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other

13Copyright 2006 by Pearson Education

Comparing different types
� When we compare Point objects to other types:

Point p = new Point(7, 2);
if (p.equals("hello")) { // should be false

...
}

� Currently the code crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

� The culprit is the line with the type-cast:

public boolean equals(Object o) {
Point other = (Point) o;

14Copyright 2006 by Pearson Education

The instanceof keyword
� We can use a keyword called instanceof to ask

whether a variable refers to an object of a given type.

� The instanceof keyword, general syntax:

<variable> instanceof <type>

� The above is a boolean expression.

� Examples:
String s = "hello";
Point p = new Point();

falsenull instanceof String

falsep instanceof String

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

15Copyright 2006 by Pearson Education

Final version of equals method

// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point object.
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

� This version correctly compares Points to any type of object.

16Copyright 2006 by Pearson Education

PolymorphismPolymorphism

reading: 9.2

17Copyright 2006 by Pearson Education

Polymorphism
� polymorphism: The ability for the same code to be

used with several different types of objects, and behave
differently depending on the type of object used.

� A variable of a type T can legally refer to an object of
any subclass of T.

Employee person = new Lawyer();

System.out.println(person.getSalary()); // 50000.0

System.out.println(person.getVacationForm()); // pink

� You can call any methods from Employee on the variable
person, but not any methods specific to Lawyer (such as sue).

� Once a method is called on the object, it behaves in its normal
way (as a Lawyer, not as a normal Employee).

18Copyright 2006 by Pearson Education

Polymorphism + parameters
� You can declare methods to accept superclass types as

parameters, then pass a parameter of any subtype.
public class EmployeeMain {

public static void main(String[] args) {
Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
}

� OUTPUT:
salary = 50000.0
vacation days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow

19Copyright 2006 by Pearson Education

Polymorphism + arrays
� You can declare arrays of superclass types, and store

objects of any subtype as elements.
public class EmployeeMain2 {

public static void main(String[] args) {
Employee[] employees = {new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

for (int i = 0; i < employees.length; i++) {
System.out.println("salary = " +

employees[i].getSalary());
System.out.println("vacation days = " +

employees[i].getVacationDays());
System.out.println();

}
}

}

� OUTPUT:
salary = 50000.0
vacation days = 15

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 10

salary = 55000.0
vacation days = 10

20Copyright 2006 by Pearson Education

Polymorphism problems
� The textbook has several useful exercises to test your

knowledge of polymorphism.

� Each exercise declares a group of approximately 4 or 5 short
classes with inheritance is-a relationships between them.

� A client program calls methods on objects of each class.

� Your task is to read the code and determine the client's output.

(Example on next slide...)

21Copyright 2006 by Pearson Education

A polymorphism problem
� Assume that the following four classes have been declared:

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

(continued on next slide)

22Copyright 2006 by Pearson Education

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

� What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

23Copyright 2006 by Pearson Education

Finding output with diagrams
� One way to determine the output is to diagram each

class and its methods, including their output:
� Add the classes from top (superclass) to bottom (subclass).
� Include any inherited methods and their output.

24Copyright 2006 by Pearson Education

Finding output with tables
� Another possible technique for solving these problems is

to make a table of the classes and methods, writing the
output in each square.

Baz

toString

method2

method1

MumbleBarFoomethod

baz

baz 1

Baz

footoString

mumble 2bar 2foo 2method2

foo 1method1

MumbleBarFoomethod

baz

foo 2

baz 1

Baz

bazfoofootoString

mumble 2bar 2foo 2method2

baz 1foo 1foo 1method1

MumbleBarFoomethod

25Copyright 2006 by Pearson Education

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

� The code produces the following output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

26Copyright 2006 by Pearson Education

Another problem
� Assume that the following classes have been declared:

� The order of classes is changed, as well as the client.

� The methods now sometimes call other methods.

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

27Copyright 2006 by Pearson Education

Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a ");
super.a();

}

public String toString() {
return "Yam";

}
}

� What would be the output of the following client code?
Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
System.out.println(); // to end the line of output
food[i].b();
System.out.println(); // to end the line of output
System.out.println();

}

28Copyright 2006 by Pearson Education

The class diagram
� The following diagram depicts the class hierarchy:

29Copyright 2006 by Pearson Education

Polymorphism at work
� Notice that Ham's a method calls b. Lamb overrides b.

� This means that calling a on a Lamb will also have a new result.

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

� Lamb 's a output: Ham a Lamb b

30Copyright 2006 by Pearson Education

The table
� Fill out the following table with each class's behavior:

Yam

toString

b

a

SpamLambHammethod

31Copyright 2006 by Pearson Education

The answer
Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

� The code produces the following output:
Yam
Yam a Ham a Spam b
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Ham
Ham a Lamb b
Lamb b

