Chapter 9:

~Inheritance and Interfaces

Copyright 2006 by Pearson Education

Lecture outline

= the equal s method

= polymorphism
» 'inheritance mystery" problems

=3}

~ " Copyright 2006 by Pearson Education 2

I e O e

- reading: 8.6

s i —— i

| s
Copyright 2'006.by Pearson Education

=2)

- e

; Copyright 2006 by Pearson Education

—

Class Object

= All types of objects have a superclass named bj ect .

= Every class implicitly ext ends bj ect .

= The Object class defines several methods:

= public String toString()
Used to print the object.

= public bool ean equal s(Cbj ect ot her)
Compare the object to any other for equality.

Object

equals
finalize
getClass
hashCode
notify
nofifyAll
toString
wait

T

Point

£y

distance
getx

gety
sefLocation
to5tring
translate

=2)

- e

; Copyright 2006 by Pearson Education 5

—

Comparing objects

= The == operator does not work well with objects.
= == compares references to objects, not their state.

= Example:
Point pl = new Point(5, 3);
Point p2 = new Point(5, 3);

1f (pl == p2) { /1 false
Systemout. println("equal");
}

The equals method

= The equal s method compares the state of objects.

= equal s should be used when comparing Stri ngs, Poi nts, ...

| f (strl.equal s(str2)) {
Systemout.printin("the strings are equal ");

= If you write your own class, its equal s method
will behave just like the == operator.

| f (pl.equal s(p2)) { /1 fal se
Systemout.println("equal");

- = This is the behavior we inherit from class bj ect .

~ Copyright 2006 by Pearson Education 6

—

Initial flawed equals method

= We can change this behavior by writing an equal s method.

= Ours will override the default behavior from class Object.

= The method should compare the state of the two objects and
return t r ue for cases like the above.

= A flawed implementation of the equal s method:

publ i c bool ean equal s(Poi nt other) {
If (x == other.x & & y == other.y) {
return true;
} else {
return fal se;

}
; }

; Copyright 2006 by Pearson Education 7

—

Flaws In equals method

= The body can be shortened to the following:

/[bool ean zen
return x == other.x & y == other.y,;

= It should be legal to compare a Poi nt to any object
(not just other Poi nt objects):

/[l this should be all owed
Point p = new Point(7, 2);
| f (p.equals("hello")) { /] false

= equal s should always return false if a non-Poi nt is passed.

=2)

-

- Copyright 2006 by Pearson Education 8

—

equals and the Object class

= equal s method, general syntax:

publ i c bool ean equal s(Obj ect <name>) {
<statement(s) that return a boolean value> ;

= The parameter to equal s must be of type bj ect.
= (bj ect is a general type that can match any object.
= Having an bj ect parameter means any object can be passed.

—

; Copyright 2006 by Pearson Education 9

—

=2)

-

—

Another flawed version

= Another flawed equal s implementation:

publ i ¢ bool ean equal s(Qpj ect 0) {
return x == 0.X & y == 0.V,
}

= [t does not compile:
Poi nt.java: 36: cannot find synbol

synbol : variable X
| ocation: class java.l ang. (bj ect
return x == 0.X & y == 0.V,

N

= The compiler is saying,
"o could be any object. Not every object has an x field."

- Copyright 2006 by Pearson Education

10

Type-casting objects

= Solution: Type-cast the object parameter to a Poi nt .

publ i ¢ bool ean equal s((Cbj ect 0) {
Point other = (Point) o;
return X == other.x & & y == ot her.y;

= Casting objects is different than casting primitives.
= We're really casting an (bj ect reference into a Poi nt reference.
= We're promising the compiler that o refers to a Poi nt object.

—

; Copyright 2006 by Pearson Education 11

—

Casting objects diagram

= Client code:
Point pl = new Point(5, 3);
Point p2 = new Point(5, 3);

i f (pl.equal s(p2)) {
Systemout. println("equal");

}
X| 5 y| 3
0]
publ i ¢ bool ean equal s((bj ect 0) {
Poi nt other = (Point) o; ot her
return x == other.x & & y == other.y;
}
pl
p2 x| 5] y| 3

=2)

-

- Copyright 2006 by Pearson Education 12

—

Comparing different types

= When we compare Poi nt objects to other types:

Point p = new Point(7, 2);
| f (p.equals("hello")) { /'l should be fal se

}

=« Currently the code crashes:

Exception in thread "nain"

j ava. | ang. C assCast Exception: java.lang. String
at Poi nt. equal s(Poi nt.java: 25)
at Poi nt Mai n. mai n(Poi nt Mai n. j ava: 25)

= The culprit is the line with the type-cast:

publ i ¢ bool ean equal s(pj ect 0) {
Point other = (Point) o;

=2)

-

- Copyright 2006 by Pearson Education 13

—

The instanceof keyword

= We can use a keyword called i nst anceof to ask

whether a variable refers to an object of a given type.

= The instanceof keyword, general syntax:
<variable> i nst anceof <type>

= The above is a bool ean expression.

« Examples: expression

String s = "hell o";

Point p = new Point();

result
S I nstanceof Point fal se
S i nstanceof String true
p I nstanceof Poi nt true
p I nstanceof String fal se
nul | i nstanceof String|false

_ Copyright 2006 by Pearson Education

—

14

Final version of equals method

/|l Returns whether o refers to a Point object wth
/] the same (x, y) coordinates as this Point object.
publ i ¢ bool ean equal s((Cbj ect 0) {

I f (o instanceof Point) {
[/ ol1s a Point; cast and conpare it

Point other = (Point) o;
return x == other.x & & y == ot her.y;

} else {
// o 1s not a Point; cannot be equal

return fal se;

}

= This version correctly compares Poi nt s to any type of object.

=3
" Sep————— Copyright 2006 by Pearson Education 15

| s
Copyright 2006 by Pearson Education

Polymorphism

= polymorphism: The ability for the same code to be
used with several different types of objects, and behave
differently depending on the type of object used.

= A variable of a type T can legally refer to an object of
any subclass of T.

Enpl oyee person = new Lawyer () ;
System out. println(person. getSalary()); /1 50000.0
System out. println(person. getVacationForn()); // pink

= You can call any methods from Enpl oyee on the variable
per son, but not any methods specific to Lawyer (such as sue).

= Once a method is called on the object, it behaves in its normal
way (as a Lawyer, not as a normal Enpl oyee).

———

_ Copyright 2006 by Pearson Education 17

—

Polymorphism + parameters

= You can declare methods to accept superclass types as

parameters, then pass a parameter of any subtype.

public class Enpl oyeeMai n {
public static void main(String[] args) {
Lawyer |isa = new Lawer();
Secretary steve = new Secretary();
printInfo(lisa);
printlnfo(steve);

}

public static void prlntlnfo(Eanoyee enmpl) {
Systemout.println("salary =" + enpl.getSalary());
Systemout.println("days = " + enpl.getVacati onbDays());
Systemout.printin("form=" + enpl.getVacationForn());
Systemout.println();

}
}
= OUTPUT:
salary = 50000.0
vacati on days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form= yel |l ow

~ Copyright 2006 by Pearson Education 18

—

Polymorphism + arrays

= You can declare arrays of superclass types, and store

objects of any subtype as elements.

public class Enpl oyeeMai n2 {
public static void main(String[] args) {
Enpl oyee[] enpl oyees = {new Lawyer(), new Secretary(),
new Marketer(), new Legal Secretary()};

for (int i =0; 1 < enployees Iength | ++) {
Systemout.println("salary = +
enployees[l] getSaIary())
Systemout. println("vacation days = +

enpl oyees[i]. get Vacati onDays());
Systemout.println();

}
}

= OUTPUT:
salary = 50000.0
vacation days = 15

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 10

" salary = 55000.0

—___ vacation days = 10
- Copyright 2006 by Pearson Education 19

—

Polymorphism problems

= The textbook has several useful exercises to test your
knowledge of polymorphism.

=« Each exercise declares a group of approximately 4 or 5 short
classes with inheritance is-a relationships between them.

= A client program calls methods on objects of each class.
= Your task is to read the code and determine the client's output.

(Example on next slide...)

—

~ Copyright 2006 by Pearson Education 20

—

A polymorphism problem

= Assume that the following four classes have been declared:

public class Foo {
public void nethodl() {
Systemout.println("foo 1");
}

public void nethod2() {
Systemout.println("foo 2");
}

public String toString() {
return "foo";:
}

}

public class Bar extends Foo {
public void nethod2() {
Systemout.println("bar 2");
}

}

(continued on next slide)

=2)

-

- Copyright 2006 by Pearson Education

—

21

A polymorphism problem

public class Baz extends Foo {
public void nethodl() {
Systemout.println("baz 1");
}

public String toString() {
return "baz";
}

}

public class Minbl e extends Baz {
public void nethod2() {
Systemout. println("mnble 2");
}

}
= What would be the output of the following client code?

Foo[] pity = {neMIBaz() new Bar (), new Munble(), new Foo()};

for (int 1 =0; 1 < pity.length; 1++) {
Systemout.println(pity[i]);
pity[i].methodl();
pity[i].nethod2();
System out. printl n();

}

—

~ Copyright 2006 by Pearson Education

22

—

~ Copyright 2006 by Pearson Education

—

Foo

rmethadi
rrethod2
toString

.-il':.

Finding output with diagrams

= One way to determine the output is to diagram each
class and its methods, including their output:
= Add the classes from top (superclass) to bottom (subclass).
= Include any inherited methods and their output.

foo 1
foo 2
foo

Bar

(rmethoct)
methiod2
(tostring)

foo 1
har 2
foo

Baz
method1 haz 1
(rmethoc2) foo 2
toString har
fMumble
(rethoci) haz 1
(tostring) haz

23

Finding output with tables

= Another possible technique for solving these problems is
to make a table of the classes and methods, writing the
output in each square.

method Foo Bar Baz Mumble
met hod1l foo 1 foo 1 baz 1 baz 1
met hod?2 foo 2 bar 2 foo 2 munbl e 2

toString |foo f oo baz baz

—

_ Copyright 2006 by Pearson Education 24

—

=2)

-

—

Polymorphism answer

Foo[] pity = {new Baz(), new Bar(), new Munble(), new Foo()};
for (int i =0; 1 < pity.length; 1++) {
Systemout.printin(pity[i]);
pity[i].nmethodl();
pity[i].method2();
Systemout.println();

}

. Tge code produces the following output:
az
baz 1
foo 2

f oo
foo 1
bar 2

baz
baz 1
munbl e 2

f oo
foo 1
foo 2

- Copyright 2006 by Pearson Education 25

—

; Copyright 2006 by Pearson Education

—

Another problem

= Assume that the following classes have been declared:
= The order of classes is changed, as well as the client.
= The methods now sometimes call other methods.

public class Lanb extends Ham {
public void b() {
Systemout.print("Lanb b ")
}

}

public class Ham {
public void a() {
System out. print("Ham a ")
b() ;
}

public void b() {
Systemout.print("Hamb ");

}

public String toString() {
return "Hant;

}

}

26

=2)

Another problem 2

public class Spam extends Yam {

}

public void b() {
Systemout.print("Spamb ");
}

public class Yam extends Lanb {

}

public void a() {
Systemout.print("Yama ");
super. a();

}

public String toString() {
return "Yant:
}

= What would be the output of the following client code?
Hanf] food = {new Spanm(), new Yan(), new Han(), new Lanb()};

for (int i =0; i <food.length; i++) {
Systemout.printin(food[i]);
food[i].a();
Systemout. println(); /[l to end the |ine of output
food[i].Db();

}

-

—

Systemout. println() /] to end the |ine of output
tln(

System out. prin)

- Copyright 2006 by Pearson Education 27

=3}

The class diagram

= The following diagram depicts the class hierarchy:

" Copyright 2006 by Pearson Education

Ham

al)
b
toString()

le.

Lamb

a()
b
toString()

Zlh

Yam

al
b{)
toString ()

[lk

Spam

a(
b
toString()

28

—

Polymorphism at work

= Notice that Hanls a method calls b. Lanb overrides b.
= This means that calling a on a Lanb will also have a new result.

public class Ham {
public void a() {
System out. print("Ham a ")
b() ;
}

public void b() {
Systemout.print("Hamb ");

}

public String toString() {
return "Hant;

}

}

public class Lanb extends Ham {
public void b() {
Systemout.print("Lanb b ")
}

}

= Lanb 's a output: Hama Lanb b

- e

; Copyright 2006 by Pearson Education

29

—

; Copyright 2006 by Pearson Education

—

The table

= Fill out the following table with each class's behavior:

method

Ham

Lamb

Yam

Spam

toString

30

=2)

- e

; Copyright 2006 by Pearson Education

—

The answer

Hani{] food = {new Spanm(), new Yan(), new Han(),

for (int i =0; i < food.length; i++) {
Systemout.printlin(food[i]);
food[i1].a();
food[i].b();
System out. println();

}

= The code produces the following output:

Yam

Yam a Ham a Spam b

Spam b

Yam

Yama Hama Lanb b

Lamb b

Ham

Hama Hamb

Ham b

Ham

Ham a Lanb b
Lanb b

new Lanb()};

31

